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DEVELOPMENT OF CURVED-PLATE ELEMENTS FOR THE EXACT

BUCKLING ANALYSIS OF COMPOSITE PLATE ASSEMBLIES INCLUDING

TRANSVERSE-SHEAR EFFECTS

ABSTRACT

The analytical formulation of curved-plate non-linear equilibrium equations including

transverse-shear-deformation effects is presented. The formulation uses the principle of

virtual work. A unified set of non-linear strains that contains terms from both physical

and tensorial strain measures is used. Linearized, perturbed equilibrium equations

(stability equations) that describe the response of the plate just after buckling occurs are

then derived after the application of several simplifying assumptions. These equations

are then modified to allow the reference surface of the plate to be located at a distance z c

from the centroidal surface. The implementation of the new theory into the VICONOPT

exact buckling and vibration analysis and optimum design computer program is described

as well. The terms of the plate stiffness matrix using both classical plate theory (CPT)

and first-order shear-deformation plate theory (SDPT) are presented. The necessary steps

to include the effects of in-plane transverse and in-plane shear loads in the in-plane

stability equations are also outlined. Numerical results are presented using the newly

implemented capability. Comparisons of results for several example problems with

different loading states are made. Comparisons of analyses using both physical and

tensorial strain measures as well as CPT and SDPT are also made. Results comparing the

computational effort required by the new analysis to that of the analysis currently in the

VICONOPT program are presented. The effects of including terms related to in-plane

transverse and in-plane shear loadings in the in-plane stability equations are also

examined. Finally, results of a design-optimization study of two different cylindrical

shells subject to uniform axial compression are presented.
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CHAPTER I

INTRODUCTION

1.1 Purpose of Study

Longitudinally stiffened plate structures occur frequently in aerospace vehicle

structures. These structures can typically be represented by long, thin, flat or curved

plates that are rigidly connected along their longitudinal edges, see Figure 1.1. The

designs for these structures often exploit the increased structural efficiency that can be

obtained by the use of advanced composite materials. Therefore, the plates used to

represent the structure may consist of anisotropic laminates. The buckling and vibration

behavior of this type of structure must be understood to design the structure.

Additionally, to satisfy the current demands for more cost-effective and structurally

efficient aerospace vehicles, these structures are frequently optimized to obtain an

optimal design that satisfies either buckling or vibration constraints or a combination of

these two constraints. There is a need for analytical tools that can provide the analysis

capability required to optimize panel designs.

The VICONOPT computer code [1] is an exact analysis and optimum design program

that includes the buckling and vibration analyses of prismatic assemblies of fiat, in-plane-

loaded anisotropic plates. The code also includes approximations for curved and tapered

plates, discrete supports, and transverse stiffeners. Anisotropic composite laminates

having fully populated A, B and D stiffness matrices may be analyzed. Either classical

plate theory (CPT) or first-order transverse-shear-deformation plate theory (SDPT) may

be used [2]. The analyses of the plate assemblies assume a sinusoidal response along the

plate length. The analysis used in the code is referred to as "exact" because it uses

The journal model adopted for this thesis follows the technical report style and format of
the NASA Langley Research Center.



stiffness matrices that result from the exact solution to the differential equationsthat

describethebehaviorof theplates.

Currently,VICONOPT approximatesacurvedplateby subdividingit into aseriesof

fiat-plate segmentsthat arejoined along their longitudinal edgesto form the complete

curved-platestructure,seeFigure 1.2. This procedureis analogousto the discretization

approachusedin finite elementanalysis.Thecodeusesexactstiffnessesfor thefiat-plate

segments and enforces continuity of displacementsand rotations at the segment

connections. Thus, the analyst must ensurethat an adequatenumber of fiat-plate

segmentsis used in the analysis. The next logical step in the developmentof the

VICONOPT code is to eliminate the needto approximatecurved-plategeometriesby

fiat-plate segmentsby addingthe capability to analyzecurved-platesegmentsexactly.

By addingthis capability, theaccuracyof the solutionscanbe improved. Furthermore,

sincethe curvatureof aplateis modeleddirectly, therewill benoneedto determineif a

sufficient amount of fiat-plate segmentshave beenused to model the curved plate.

Anotherbenefit of addingthis capabilityis thatthecomputationalefficiency of the code

will be improved since only one stiffness calculation for the entire curved plate is

required,ratherthan the severalthat arecurrently requiredfor the individual flat plates

that are used to approximatethe curved plate. This improvement in computational

efficiency is importantfor structuraloptimization. In this thesis,thecapability to analyze

curved-platesegmentsexactly hasbeenaddedto the VICONOPT code. The present

thesiswill describethe methodologyusedto accomplishthis enhancementof the code

andwill presentresultsobtainedutilizing thisnewcapability.

Theprocedureusedin thepresentthesisis anextensionof theproceduredescribedin

[2]. This procedure involves deriving the appropriate differential equations of

equilibrium for theanalysisof fully anisotropiccurvedplates,including transverse-shear-

deformation effects. Thesecoupled equationsare of eighth-order if transverse-shear

effectsareneglected,andof tenth-orderif transverse-sheareffectsareincluded. For the



3

analysisof flat plates, the coupling of theseequationsoccurs through the laminate

extension-bending B matrix; however, coupling can also be producedby including

curvaturetermsin theequilibrium equations.Thenumericalsolutiontechniquethatwas

developedin [2] to solvesuchsystemsof equationswill apply for eithertypeof coupling,

and the stiffnessesof the plates are derived from the numerical solution to these

equations.

Several featureshavebeen addedto the VICONOPT code as part of the present

thesis. The currentversionof VICONOPT only analyzesfiat-plateelementsbasedon a

tensorial strain-displacementrelation. However, the choice of strain-displacement

relationscanaffect the contributionof prebucklingforcesin curvedplates. Therefore,a

unified set of nonlinear strain-displacementrelations that contains terms from both

physical and tensorialstrainmeasuresis usedto derivethe plateequilibrium equations.

The unified setof strainsis usedthroughoutthe derivationof theequilibrium equations,

and the selectionof either physical or tensorial strains is achievedby appropriately

settingcoefficientsin the equilibriumequationsequalto oneor zero. The option to use

physical strain-displacementrelationsfor the analysisof flat platesis includedaswell.

Another additionis thetreatmentof theeffectsof in-planetransverseandin-planeshear

loadingsin the in-planeequilibrium equations.Theseeffectsarecurrentlyignoredin the

VICONOPT code(see[1]). In thepresentthesis,an in-planetransverseloading,denoted

N22,is a loading that acts perpendicularto the longitudinal edgesof the plate. The

presentstudyhasaddedtheoptionto includetheeffectsof theseloadingsin the in-plane

equilibrium equations. Finally, either CPT or SDPTmay beused. The SDPT usedin

VICONOPT andin the presentthesisusesthe usualfirst-order assumptionthat straight

lines originally normal to the centroidal surfaceare assumedto remain straight and

inextensionalbut not necessarilynormal to the centroidalsurfaceduring deformationof

the plate. All of thesefeatureshavebeenimplementedsuch that they areavailable for

usein theanalysisof bothflat andcurvedplates.
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1.2 Literature Review

The buckling and vibration analysis of assemblies of prismatic plates has received a

great deal of attention over the last thirty years. One method of analysis for this class of

structure that has been studied extensively is the finite-strip method, FSM [3]. A popular

application of this method involves determining a stiffness matrix for each individual

plate in the assembly and then assembling those individual matrices into a global stiffness

matrix for use in determining the response of the entire structure. This method is

therefore analogous in form to the finite element method [4]. The main difference

between the two methods is that the finite element method discretizes the individual

plates into elements in both the longitudinal and transverse directions. The stiffness

matrix for each individual element is then calculated and assembled into a global stiffness

matrix. In the FSM, the response of the plate in the longitudinal direction is represented

as a continuously differentiable smooth series that satisfies the boundary conditions at the

two ends of the plate. Therefore, discretization of the structure is only required to be

performed in the transverse direction, and depending on the method being used,

discretization of the individual plates may or may not be required [3].

The work in the area of finite strip analysis of assemblies of prismatic plates may be

broadly classified based upon different characteristics of the analysis method used. One

classification distinguishes whether the properties of the individual plates are derived by

direct solution to the equations of equilibrium or by application of potential energy or

virtual work principles, i.e., exact versus approximate methods. Another classification

distinguishes whether classical plate theory (CPT) or first-order shear-deformation plate

theory (SDPT) is used in the analysis. Finally, a distinction may be made as to whether

or not complex quantities are used in the development of the individual stiffness matrices.

A review of the literature in the area of finite strip analysis methods is presented below.

Approximate methods are discussed separately from exact methods.



The approximate FSM was first proposed for the static analysis of plate bending by

Cheung in 1968 [5]. The approximate FSM involves subdividing each plate into a series

of finite-width strips that are linked together at their longitudinal edges in a manner

similar to that depicted in Figure 1.2. Separate expressions for in-plane and out-of-plane

displacements as well as rotations about the in-plane x and y axes over the middle surface

of each strip are assumed. Each of these fundamental quantities are expressed as a

summation of the products of longitudinal series and transverse polynomials [3]. The

longitudinal series are typically sinusoidal and are selected to satisfy displacement

conditions at the transverse edges of each strip that match the desired plate boundary

conditions along those edges. The potential energy of an individual finite strip is then

evaluated, and the total potential energy of the plate is obtained by summing the potential

energies of the individual strips. Following the application of any appropriate zero-

displacement boundary conditions at the longitudinal edges, the potential energy is

minimized with respect to each plate degree of freedom to generate the equilibrium

equations for the plate. Displacements are then calculated for a given loading condition

using this system of equations.

The analysis of [5] utilized CPT for the static bending analysis of isotropic plates. In

197 I, Cheung and Cheung [6] applied the approximate FSM to the analysis of natural

vibrations of thin, flat-walled structures with different combinations of the standard edge

boundary conditions (i.e., clamped, simply supported, or free). Their analysis was based

upon CPT and the displacements in the longitudinal direction were approximated using

the normal modes of Timoshenko beam theory to allow for various boundary conditions

on the transverse edges.

Przemieniecki [7] used an approximate FSM based upon CPT to calculate the initial

buckling of assemblies of flat plates subjected to a biaxial stress state. This method only

considered local buckling modes since it assumed that the line junctions between plates

remained straight during buckling. Plank and Wittrick [8] extended the work of



Przemienieckiby consideringglobal as well as local modesand by admitting a more

generalloadingstatethat includeduniform transverseandlongitudinal shearstressand

longitudinaldirectstressthat varieslinearly acrossthewidth of theplate. Whenin-plane

shearloadingis present,aspatialphasedifferenceoccursbetweentheperturbationforces

and displacementswhich occurat the edgesof the platesduring buckling. This phase

differencecausesskewingof thenodal lines andis accountedfor in [8] by defining the

magnitudeof thesequantitiesusingcomplexquantities. This methodis referredto asa

complexfinite stripmethod.

In 1977,Dawe [9 and 10] usedanapproximateFSM baseduponCPT for the static

and linear buckling analysis of curved-plate assemblies. The plates studied were

isotropic, and in-planeshearloadswere not allowed. Morris and Dawe extendedthis

analysisto studythefreevibrationof curved-plateassembliesin 1980[11].

All of the analysesdiscussedthus far havebeenbaseduponCPT. In 1978,Dawe

[12] presentedanapproximateFSMbaseduponSDPT[13] for thevibrationof isotropic

plateswith apair of oppositeedgessimply supported.RoufaeilandDawe[14] andDawe

andRoufaeil [15] extendedthis analysisto the vibration andbuckling, respectively,of

isotropic andtransverselyisotropicplateswith generalboundaryconditions. The latter

two analysesadmittedthe generalboundaryconditionsthroughthe useof the normal

modesof Timoshenkobeamtheory,aswasdonein [6].

In 1986, Craig and Dawe [16] consideredthe vibration of single symmetrically

laminatedplatesusing anapproximateFSM basedupon SDPT. Dawe and Craig [17]

thenextendedthisanalysisto studythebucklingof singlesymmetricallylaminatedplates

subject to uniform shearstressand direct in-plane stress. This analysisallowed for

anisotropicmaterialproperties. Generalboundaryconditionswereonceagainadmitted

throughthe useof the normalmodesof Timoshenkobeamtheory. The analysisof [17]

wasextendedin 1987to thevibration of completeplate assemblies[18]. However, it

was shown in this work that the problem size increaseddramatically as attempts to
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increasethe accuracyof thesolutionweremadeby further subdivisionof the component

plates.

In 1988,Dawe andCraig [19] presenteda complexFSM baseduponSDPT for the

buckling andvibration of prismaticplatestructuresin which thecomponentplatescould

consistof anisotropiclaminatesandcouldbesubjectto in-planeshearloads. This work

also made useof substructuring to create "superstrips" that eliminated the internal

degrees-of-freedomfrom eachcomponentplate. This analysiswas later extended to

consider finite-length structures[20 and 21] and to add multi-level substructuring to

coupleseveral"superstrips"to further decreasethe problemsize. Dawe and Peshkam

[22] also developeda complementaryanalysisto that presentedin [20 and 21] for long

plate structures. Analysesusingboth SDPTandCPT werepresented.This work also

addedthecapabilityto defineeccentricconnectionsof componentplates.

Wittrick laid thegroundworkfor theexactFSM in 1968[23]. Thebasicassumption

in this work is that the deformationof any componentplate varies sinusoidally in the

longitudinal direction. Using this assumption,a stiffnessmatrix may be derived that

relates the amplitudes of the edge forces and momentsto the corresponding edge

displacementsand rotations for a single componentplate. For the exact FSM, this

stiffness matrix is deriveddirectly from the equationsof equilibrium that describethe

behaviorof the plate. In [23], Wittrick developedanexactstiffnessmatrix for a single

isotropic, long fiat plate subjectto uniform axial compression.His analysisusedCPT.

Wittrick and Curzon [24] extended this analysis to account for the spatial phase

differencebetweentheperturbationforcesanddisplacementswhich occurat theedgesof

the plate during buckling due to the presenceof in-plane shearloading. This phase

differenceis accountedfor by defining themagnitudeof thesequantitiesusing complex

quantities.Wittrick [25] thenextendedhisanalysisto considerflat isotropicplatesunder

any general state of stressthat remains uniform in the longitudinal direction (i.e.,

combinationsof bi-axial direct stressandin-planeshear).A methodvery similar to that



describedin [23] waspresentedby Smith in 1968[26] for the bending,buckling, and

vibrationof plate-beamstructures.

In 1972,Williams [27] presentedtwo computerprograms,GASVIP and VIPAL to

computethe naturalfrequenciesandinitial buckling stressof prismaticplate assemblies

subjected to uniform longitudinal stress or uniform longitudinal compression,

respectively. GASVIP wasusedto set up the overall stiffnessmatrix for the structure,

andVIPAL demonstratedtheuseof substructuring.In 1974,Wittrick andWilliams [28]

first reportedon the VIPASA computercodefor the buckling andvibration analysesof

prismaticplateassemblies.This codeallowedfor isotropicor anisotropicplatesaswell

asageneralstateof stress(including in-planeshear).The complexstiffnessesdescribed

in [8] were incorporated, as well as allowances for eccentric connections between

componentplates. This codealsoincorporatedanalgorithm,referredto astheWittrick-

Williams algorithm,for determininganynaturalfrequencyor buckling loadfor anygiven

wavelength[29]. Thedevelopmentof this algorithmwasnecessarybecausethecomplex

stiffnessesdescribed aboveare transcendentalfunctions of the load factor and half

wavelength of the buckling modes of the structure. The eigenvalue problem for

determining natural frequenciesandbuckling load factors is thereforetranscendental.

Furtherdiscussionof theWittrick-Williams algorithmwill bepresentedin ChapterHI.

In 1973,ViswanathanandTamekuni[30 and31] presentedanexactFSM basedupon

CPT for theelasticstability analysisof compositestiffenedstructuressubjectedto biaxial

inplane loads. The structureis idealizedasanassemblageof laminatedplate elements

(fiat or curved)andbeamelements.The analysisassumesthat thecomponentplatesare

orthotropic. The transverseedges are assumedto be simply supported, and any

combination of boundaryconditions may be applied to the longitudinal edges. The

analysis was included in an associatedcomputer code,BUCLAP2. Viswananthan,

Tamekuni, and Baker extended this analysis in [32] to consider long curved plates subject

to any general state of stress, including in-plane shear loads. Anisotropic material
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propertieswere alsoallowed. This analysisutilized complexstiffnessesasdescribedin

[8]. Theanalysesdescribedin [26, 28,and32] arevery similar. Thedifferencesbetween

thethreearediscussedin [28].

When applied in-plane shearloadsor anisotropy is present,the assumptionof a

sinusoidal variation of deformation in the longitudinal direction is only exact for

structuresthat are infinitely long. Significanterrors for structuresof finite length can

occurdueto theskewingof nodallines. In 1983,Williams andAnderson[33] presented

modificationsto theeigenvaluealgorithmdescribedin [29]. Themodificationspresented

in [33] allowedthe buckling modecorrespondingto a generalloadingto be represented

asa seriesof sinusoidalmodesin combinationwith Lagrangianmultipliersto applypoint

constraintsat any locationon thoseedges. Eachsinusoidalmodeis representedby an

exact stiffness matrix. This techniqueallows infinitely long structuressupportedat

repeatingintervalswith anisotropyor appliedin-planeshearloadsto be analyzed.Thus,

a panel supportedat its transverseedgesis approximatedby one with a seriesof point

supportsalongthoseedges.Thesemodificationsformedthebasisfor thecomputercode

VICON (Vlpasawith CONstraints)describedin [34]. However,the analysiscapability

of VICON waslimited to platesanalyzedwith CPThavingazeroB matrix. The VICON

codewas latermodifiedto includestructuressupportedby Winkler foundations[35]. An

optimum design featurewas also added in 1990 [36 and 37], and the VICONOPT

(VICON with OPTimization)codewasintroduced.

Anderson and Kennedy [2] incorporated SDPT into VICONOPT in 1993. A

numericalapproachto obtainexactplatestiffnessesthatincludetheeffectsof transverse-

sheardeformationwaspresented.Thegeneralityof VICONOPT wasalsoexpandedin

[2] to allow for the analysisof laminateswith fully populatedA, B, and D stiffness

matrices.
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1.3 Scope of Study

The analytical formulation of the curved-plate non-linear equilibrium equations

including transverse-shear-deformation effects are presented in Chapter II. A unified set

of non-linear strains that contains terms from both physical and tensorial strain measures

is used. The equilibrium equations are derived using the principle of virtual work

following the method presented by Sanders [38 and 39]. Linearized, perturbed

equilibrium equations that describe the response of the plate just after buckling occurs are

then derived after the application of several simplifying assumptions. Modifications to

these equations that allow the reference surface of the plate to be located at a distance zc

from the centroidal surface are then made.

In Chapter III, the implementation of the new theory into the VICONOPT code is

described. A derivation of the terms of the plate stiffness matrix using MATHEMATICA

[40] is presented. The form of these terms for both CPT and SDPT is discussed. The

necessary steps to include the effects of in-plane transverse and in-plane shear loads in

the in-plane equilibrium equations are also outlined.

In Chapter IV, numerical results are presented using the newly implemented

capability. A convergence study using the current segmented-plate approach in

VICONOPT is performed for a simple example problem to obtain baseline results for use

in future comparisons. Results comparing the computational effort required by the new

analysis to that of the analysis currently in the VICONOPT program are also presented.

Comparisons of results for several example problems with different loading states are

then made. Comparisons of analyses using both physical and tensorial strain measures as

well as CPT and SDPT are made. The effects of including terms related to in-plane

transverse and in-plane shear loads in the in-plane stability equations are also examined.
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In ChapterV, thecharacteristicsof thenewly implementedcurved-plateelementsin

VICONOPT is presented.A brief summaryof the effectsof severalanalytical features

that havebeenimplementedinto VICONOPT is given. Finally, potential futurework in

this areais discussed.
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CHAPTER II

ANALYTICAL FORMULATION

In this chapter, the non-linear equilibrium equations are derived for a curved plate

including transverse-shear effects. A unified set of non-linear strains that contain terms

from both physical and tensorial strain measures is used. The equilibrium equations are

derived using the principle of virtual work following the method presented by Sanders

[38 and 39]. Linearized stability equations that describe the response of the plate just

after buckling occurs are then derived following the application of several simplifying

assumptions. Modifications to these equations that allow the reference surface of the

plate to be located at a distance zc from the centroidal surface are then made.

2.1 Plate Geometry, Loadings, and Sign Conventions

The geometry of the basic plate element being studied is given in Figure 2.1. This

figure depicts the orthogonal curvilinear coordinate system (_, _2, _3) used in the present

analysis. The _t- and _2-axes shown in the figure are along lines of principal curvature

and they have radii of curvature R_ and R v respectively. The _2-axis is normal to the

middle surface of the plate. The first fundamental form of the plate middle surface is

given by

as2: (2.1)

where oq and _ are the Lam6 parameters. The coordinates _ and _ are measured as arc

lengths along the _,- and _2-axes, respectively. The result of measuring the coordinates in



13

this manner is that oq = 0{2, -- 1. The sign conventions for buckling displacements,

moments, rotations, and forces are also shown in Figure 2.1. The sign convention for the

applied in-plane loadings being considered and the relation of the reference surface of the

plate to the centroidal surface of the plate are shown in Figure 2.2. Note that that

centroidal surface can be offset from the reference surface by a distance z c. The

centroidal surface is defined to be located at the centroid of the face of the panel that is

normal to the _t-axis. The loading N22 shown in this figure is referred to in the present

thesis as an in-plane transverse loading.

2.2 Strain-Displacement Relations

The nonlinear strain-displacement relations used for the present study are given by

:Ell Ul,1 +_+ w, 1 +--U2,1 +-- Ul, 1 +
R1 -'RII] "2"

(2.2a)

Wl[wE22 = u2,2 + _ + ,2 + u2,2 + u2,2 +
R 2 2 - "_2"2] _2

(2.2b)

Ul
u--.-_2- w, 2 _+_

2E12 = 712 = Ul,2 + u2,1 + W,l w,2 -w,1 R2 RI

[ _w-G__ Ul,2U2, 2 +u2,1Ul, 1 +Ul, 2 _2 +u2,1

+H Ul,2Ul, 1 +u2,1u2, 2 +Ul,2_+u2,1
R1

UlU2

R1R2

(2.2c)
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Ul
2_;13 = 713 = w,1 --- - _1 (2.2d)

RI

2e23 = 3'23 = w,2 - u--L2- _2 (2.2e)
R2

Ou i

where the following notation for partial derivatives is used: _--_j= ui, j. The

displacement quantities in Eqs. (2.2a) through (2.2e) are displacements of the centroidal

surface of the plate. The constants B, C, E, F, and H are set equal to one and G is set

equal to zero in Eqs. (2.2a) through (2.2e) to use tensorial strain measures. The constants

B, E, and G are set equal to one and C, F, and H are set equal to zero to use physical

strain measures. Note that the linear portions of the tensorial and physical strain

measures are identical. To obtain Donnell theory from the strain-displacement relations

in Eqs. (2.2a) through (2.2e) the constants B, C, E, F, G, and H must be set equal to zero,

and all terms involving the quantities ul and u2-- -- must be neglected. Sander's theory
RI R2

[39] may be obtained by setting the constants B, C, E, F, G, and H equal to zero and

1 2

adding the term __n to Eqs. (2.2a) and (2.2b), where _, is the rotation about the normal

to the plate middle surface.

The tensorial strain measures used in the present study are those of Novozhilov [41].

These strains are obtained by taking the difference between the square of the arc length of

a line element in a body after deformation, (ds') 2, and before deformation (ds) 2. The

tensorial strain measures, ejk, are defined by the relationship

 [t s't i, j = 1, 3 (2.3)
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The repeatedindices in Eq. (2.3) indicatesummationover i andj. The physical strain

measuresarestrainsthatcanbemeasuredin the laboratory. Thephysical strainsusedin

the presentthesisarederivedin a mannersimilar to that presentedby Stein in [42] and

theywerecommunicatedto theauthorin linesof curvaturecoordinatesby Dr. MichaelP.

Nemeth1. Physicalextensionalstrainsaredefinedastheratio of thechangein arc length

of a line elementin abody,ds', to theoriginal lengthof thatline element,ds,

(ds*)j - (ds)j
j = 1,2 (no summation) (2.4a)

Ejj = (ds)j

Physical shearing strains are defined as the change in the angles between three line

elements that are orthogonal before deformation and are oriented in the direction of three

unit vectors, _j, after deformation. The physical shearing strains are defined by the

following expressions

) ^_ ^_sin 712 --- ]t12 = el "e2 (2.4b)

( ) ^*sin _'j3 --" ]t j3 = e_ *e3 J = 1,2 (2.4c)

The definitions for the changes in curvatures of the centroidal surface used for both

theories are

K:ll = -_1,1 (2.5a)

1_22 = -_2,2 (2.5b)

=-(,,.2+,2.,)  2.5c)

i Structural Mechanics Branch, Structures Division, NASA Langley Research Center, Hampton, Virginia,
23681-0001
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These changes in curvatures are equivalent to those given by Sanders in [39] with the

terms involving rotations about the normal neglected.

2.3 Equilibrium Equations

The nonlinear equilibrium equations for the curved plate illustrated in Figures 2.1 and

2.2 are derived using the principle of virtual work [43]. This principle states that, if a

structure in equilibrium is subject to a virtual distortion while remaining in equilibrium,

then the external virtual work done by the external forces on the structure is equal to the

internal virtual work done by the internal stresses. The principle of virtual work can

therefore be written in the form

_Ti_Suids + _fi_Suidv = _tYijSeijdv (2.6)
surface volume volume

The present derivation uses the principle of virtual work in the manner of Sanders [38]

written in the following form

[fill_Ell +r122_£22+2fi12_E12 +ITlll_l(ll ]d_ld_ 2_ L+_225_:22 + 2m12_51_12 + _ql_]tl3 + qE_qt23area

+_[Nll_SUl +NI2_U 2 +QI_w-M ll_t_l -M12_2]d_2
C

-}[N125u I + N22_u 2 +Q25w- MI2_I - M22_02]d_l
C

= 0

(2.7)

The terms fi12 and lrnl2 are effective stress measures as defined by Sanders in [38]. The

terms ?ql and q2 are also effective stress measures as defined by Cohen in [44]. The

uppercase terms in Eq. (2.7) are applied loadings on the boundary of the plate.

Substituting Eqs. (2.2a) through (2.2e) and Eqs. (2.5a) through (2.5c) into Eq. (2.7)

and integrating by parts results in
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([ u2)+_,,¢w ", l+ _,_-¢w -_I![ _,,,,+_,2,__<,t"-_) _t ,2

u2, +
u,,,+;,}12

+ n22 ¢W --'_2"2 + R1 .)n12,1+n22,2 R2 t ,2 R2 t ,l "--

[ + u,)l+_,,,+_:,_¢",, _]+ _,,w,,-m,
_, Rl R2 J ,1

[( u,)]+=,_., )
+ ill2 W,l-_l ,2 RI t'RI Ul'l

=22(wI--+u2, 2 +Gill2
R2 R2 {, R2 R1 J

._ (u,,2 u2,' ]]Sw

---"n'_t,--ff-,+ R2JJ

+m
R1

q2

R2
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+ Nll +fill +Grill Ul,l -Gfil2U2,1 +--HI]12Ul,2 Ul

+IOl+Ol+ 11(W,l+u-,,2(w,2+u2 l wR2 ,

-[Mll + I:1111 ]_t_l -[M12 + 11112 ]_P 2 ] d_2

+!([N,2 +n,2 + E-fi22Ul,2- Gn12(u2,2 +_2/+L_12/Ul,1 +_11 )_Ul

+[Q2+q2+[ll2[W'l+Ul ]+n22(w'2+u2]l_WR1) R2)]

-[M12 + fill= ]_1 -[M22 + rh22 ]_i_2 ]d_l = 0 (2.8)

For arbitrary displacements u_, u z, w, _, and 02, the coefficients of the displacements in

the area integral in Eq. (2.8) are the five equilibrium equations. The coefficients of the

displacement variables in the first line integral in Eq. (2.8) are the natural boundary



conditions for an edge _1 _-_ constant, and the coefficients of the displacement variables in

the second line integral are the natural boundary conditions for an edge _2 -" constant.
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2.4 Stability Equations

A set of perturbation equilibrium equations that govern the stability of the plate,

referred to herein as the stability equations, may now be written by taking the difference

between the equilibrium equations evaluated for an equilibrium state just prior to

buckling and an adjacent (perturbed) equilibrium state just after buckling has occurred.

Let the prebuckling state be represented by:

fill =-NIl, fi22 = -N22, ill2 = -NI2, rhll = -Mll,

ri122 =-M22, r_tll2 =-M12, ql = -QI, q2 =-Q2,

U1, U2, W

(2.9)

The minus signs in the loading terms reflect the sign convention used in which the

applied loads are opposite in direction to the loads that develop after buckling. Let the

perturbed state just after buckling has occurred be represented by:

fill = nll -Nll, fi22 = n22 -N22, ill2 = n12 -Nl2,

roll = mll -Mll, ri122 = m22 -M22, Ii112 = m12 -Ml2,

ql =ql-QI, q2 =q2-Q2, Ul +U1, u2 +U2, w+W

(2.10)

where the lower case variables are perturbation variables. Taking the difference between

the two equilibrium states represented by Eqs. (2.9) and (2.10), linearizing the resulting

equations for the perturbation variables, and applying the following simplifying

assumptions:
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1)

2)

Prebuckling deformations, moments, and transverse-shear stresses are

negligible

The in-plane prebuckling stress state is uniform

yields the following stability equations:

( u2)nll"+n12'2_ q' Nll W'l-Ul'_-N12(w' --'_2-2

-_CNll/_+Ul,ll -EN22Ul,22 +GN12 +u2,11 +u2,22
_.R2

(2.11 a)

( u2)Nl2 wu,1n12'l + n22'2 -t R2q2 N22R2 w'2-_2 - R2 [, ,1-_1-1

-BNilU2,11-FN22 (w'2_ _ R2 +u2'22)+GN12(_-ll+Ui'll-- +u1,22)

W'l 1-LINI2_ R2 +2u2,12 = 0

(2.1 lb)

ql,l +q2,2

-N12/w,12 ---

+-FN22 I w +u2,2)-G--N12Iu2'IR2_,R2 _, RI +Ul'21R2J

+HNla(Ul,2 +u2,1)=0

_, RI R 2 .)

( ( u_,)nll n22 Ul,l/_N12 w,2 I-
R1 R2 Nil W, ll-Rl) R2J

ul,2 _N22 w,22 + +Ul, 1
RI R2 RI k,Rl

(2. i lc)

mll,l+ml2,2-ql =0

m12,1 +m22,2-q2 =0

(2.1 ld)

(2.1 le)
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The boundary conditions for an edge _ = constant are

_u 1 =0

or

nll -_CNll Ul,1 + G__NI2U2,1 - LIN12Ul,2 =0

5U 2 =0

or

nl2_B_NllU2,1+GNI2 Ul,l+ w _HNI 2 u2,2+ =0

(2.12a)

(2.12b)

5w =0

or (2.12c)

&_l = 0 or ml 1 = 0 (2.12d)

&b 2 = 0 or m12 = 0 (2.12e)

As will be discussed in Chapter HI, a sinusoidal variation of displacements and forces is

assumed in the _ direction. Therefore, these boundary conditions are ignored herein.

The boundary conditions for an edge _2 = constant are

_U 1 =0

or

ill2 =nt2-EN22Ul,2+G__NI2 u2, 2 -HN12 Ul,l+ =0

5u 2 = 0

or

(2.13a)

(2.13b)
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8w=0

or

q2=q2-N12(W'l+_ll)-N22(w'2+U2/R2 )

_)1 = 0 or m12 = 0

_2 = 0 or m22 = 0

=0

(2.13c)

(2.13d)

(2.13e)

where the terms with a caret (^) are effective force quantities per unit length at an edge

_2 = constant. The effective forces, ri12,fi22, and q2 are equal to forces in the original

(undeformed) _-, _2-, and _3-directions along the longitudinal edges of the plate

(_2=constant). Introduction of these force quantities facilitates the derivation of the

stiffness matrix in Chapter III which relates the forces along the longitudinal edges of the

plate in the original coordinate directions to the corresponding displacements along those

edges.

The first three stability equations given in Eqs. (2.11a) through (2.11c) are now

written in a simplified form using the definitions of the effective forces per unit length

given in Eqs. (2.13a) through (2.13c)

ql
nll,1 + f112,2 4

R1

W'l )

Nil

(w, u2R1

+GNI2U2,11 -L-_12Ul,12 = 0

( / u'/n12,1+fi22,2 q R2q2 N22R2 w'2-R22 R2 t 1

(2.14a)

(2.1 4b)



A (u,,/ ( u21 ^ nil n22 N11 W, ll N12 w,21
ql,1 +q2,2 R1 R2 RI j R2 j

4--CNll ( w / GNI2U2'I HN12Ul'2--+Ul, 1 + -0
R1 [,R1 RI R1

(2.14c)
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This form of these stability equations will be used herein. Note that Eq. (2.14b) contains

the perturbation variables ntz and q2. These variables are related to the effective forces,

ill2 and q2, through Eqs. (2.13a) and (2.13c).

2.5 Stability Equations Transformed to the Plate Reference Surface

The stability equations given in Eqs. (2.1 la) through (2.1 le) describe the response at

the centroidal surface of the plate. A superscript o may be added to the displacement

quantities in these equations to indicate that they are centroidal quantities. These

equations are now written such that they describe the response at the reference surface of

the plate, which can be located a distance zc from the centroidal surface, Figure 2.2. To

write the stability equations at the reference surface, the following information is used:

o and o1) The relations of the displacements at the centroidal surface, u ! u 2' to the

displacements at the reference surface, u_ and u 2 are:

O

u I = u I -Zc_ 1 (2.15a)

O

U 2 = U2 --Zc_ 2 (2.15b)

2) o o and m °The relations of the moments at the centroidal surface, m ll, m22, 12, to

the displacements at the reference surface, m I1, m22, and ml2 are:
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o

mll =mll-zcnll (2.15c)

o
m22 = m22 - Zcn22 (2.15d)

o

m12 =ml2-zcnl2 (2.15e)

3) The following quantities do not vary with z:

Nil, N22, N12, nil, n22, n12, ql, q2, and w

4) The applied in-plane stresses, Nit, N22, and Nt2 act at the centroidal surface.

Substitution of Eqs. (2.15a) through (2.15e) into Eqs. (2.14a) through (2.14c) and Eqs.

(2.1 ld) and (2.1 le) yields the following equations

Ul -Zcd_l ]_ N12 (w,2
Nllql

nll,l + fi12,2 4 w, 1
RI R1 R1 ) RI

-_CNll _1 Ul,I-Zc¢I +QNl2[U2-Zc*2],ll
,1

-HN12[u I - Zc(_l],12 =0

(2.16a)

U2-Zc*21 N12 (wnl2,1 +fi22,2 +R2q2 N22R2 w'2 R2 ' - R2 _ ,1

-B_Nll(U2-Zc*2),ll +GN12(_ll+[ul-Zc01],ll)

u 1 - Zc¢ 1 "_

)

(2.16b)
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ql,! +_2,2 nll fi22 (Ul-Zct_l.)R1 R2 Nil W'l R7 ,1

/ )u2 -Zc_2 + +[Ul Zeal] 1 (2.16c)
-Nl2 w'2 R2 ,1 R! _R,1

GN_2[u2- Zc_'2],) _HNI2[U_- z_,),)],2
4 + =0

R1 Rl

mll,l+ml2,2-Zc(nll,1 +n12,2)-ql =0 (2.16d)

m12,1 +m22,2 -Zc (n12,1 +n22,2 )-q2 =0 (2.16e)

The natural boundary conditions are also rewritten after substitution of Eqs. (2.15a)

through (2.15e) into Eqs. (2.13a) through (2.13e). For an edge _2 = constant, the natural

boundary conditions become

n12 =n12-EN22[Ul-Zc_l],2 +G__NI2 u2-Zc_212 +

( Ul-zco,,, o
(2.17a)

fi22 =n22--FN22 u2-Zc*2],2 + +G--Nl2[Ul-Zc*l],2

-L_N 12[u2 - Zc002 ],1 = 0

(2.17b)

=q2-N,2(w,  'u2-zc°2Jl=oRI R2
(2.17c)



m12- Zcnl2 = 0

m22-Zcn22 = 0

(2.17d)

(2.17e)

The last two stability equations, Eqs. (2.16d) and (2.16e), are now rewritten by

substitutingexpressionsfor thequantities (nil,1 + n12,2) and (n12,1+ n22,2)that can

be obtained using Eqs. (2.16a) and (2.16b), respectively,and the definitions for the

effective forces per unit length, Eqs. (2.17a)through (2.17c). The definitions for the

effectiveforcesareneededsincethetermshi2andn= thatappearin thetwo abovearethe

perturbationvalues,not the effectiveforces. Substitutionof theexpressionsfor the two

quantitiesaboveinto Eqs.(2.16d) and(2.16e),respectively,yields the final form of the

last two stability equations

Ul - ZcO 1 )
z Fql Nll w, 1

mll,l +m12,2-ql + CL< R1 k;

( / )N12 w,,2 u2-Zc_2 _C, N11 +Ul,l-Zc_ 1
R1 R2 ,1

-EN22(u,-Zc*l) 22 +GNI2 (w'2 +[u 2 -Zc*2],ll
_,R2

(2.18a)

z [q2

m12,1 +m22,2-q2 + c[._22

(u,-zc,,)N12R2

U2 2Zc_2 ]
N22 w, 2
R 2 R2 )

1 --Zcq_l],ll

0

(2.18b)
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The stability equations in the form given in Eqs. (2.16a) through (2.16c) and Eqs. (2.18a)

and (2.18b) are those implemented into the VICONOPT code.

2.6 Constitutive Relations

The present analysis allows for generally laminated composite materials. The

geometry of a general, curved laminate is given in Figure 2.3. As shown in the figure,

the number of layers in the laminate is q, and the width of the laminate is b. The radius

of curvature of the _2-axis, R_ is shown in the figure as well.. The radius of curvature of

the _-axis, R_ is not shown; however, its direction may be inferred from that of R 2. The

lamina coordinate system is the (_v, _r, _3) system and the laminate coordinate system is

the (_, _2, _3) system. The lamina coordinate system is aligned with the principal

material direction of the lamina, and the laminate coordinate system is aligned with the

principal geometric directions of the laminate. The coordinate system for the kth lamina

is oriented at an angle Okwith respect to the laminate coordinate system. The stress-strain

relations in the lamina coordinate system for a lamina of orthotropic material in a state of

plane stress are

27

{ ll o120o=
't12, 0 Q66 Jilt 12

(2.19)

where the [Q] matrix is referred to as the reduced stiffness matrix for the lamina and is

defined in [45] in terms of the elastic engineering constants of the lamina. These

relations may be written in the laminate coordinate system by use of transformation

matrices as defined in [45]. The transformed relations are
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{ 11}r l10120161f 11t_==--/2,=_==_=6/1_==
"1;12 LQ16 Q26 Q66 .] [.'Y12

(2.20)

where the [Q] matrix is the reduced transformed stiffness matrix for the lamina. Both of

Eqs. (2.19) and (2.20) may be thought of as stress-strain relations for the kth lamina in a

multi-layer laminate. Therefore, Eq. (2.20) may be written as

{_}k = [Q]k{eIk (2.21)

The constitutive relations for a thin, elastic laminated composite shell may now be

defined as

Nil

N22

N12

M"/M22

.M12

-All AI2 A16

AI2 A22 A26

A,6 A26 A66

Bll BI2 B16

BI2 B22 B26

B16 B26 B66

BII B12 B16

BI2 B22 B26

B16 B26 B66

Dll D12 DI6

D12 D22 D26

DI6 D26 D66

I_11

g22

_'l.__k2>

1_11 1
K22

K,2

(2.22)

where the resultant forces and moments acting on the

respectively, are defined as

N12 k=l Zk_l [.g12

laminate, {N} and {M},

(2.23)

M,,}., fol11
M12 k=l zk_ i [.gl2J

(2.24)
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where nj is the total number of layers in the laminate. The extensional, coupling, and

bending stiffness matrices, A, B, and D, respectively, are defined as

nl

k=l Zk_ 1

The analysis in VICONOPT allows for laminates with fully populated A, B, and D

matrices.

The constitutive relations for transverse shear used in VICONOPT are those

presented by Cohen in [44]. The constitutive relations for transverse shear are written in

inverted form as

{ ,3t:ikllk,2]iq,tT23 _k12 k22 q2

where [k] is a symmetric 2-by-2 transverse shear compliance matrix whose terms are

defined in [44]. The terms of the [k] matrix were derived for general, anisotropic, multi-

layered composite shells and they are a generalization of results for a shell with a

homogeneous wall for which the transverse shear correction factor for the shear stiffness

is 5/6. The procedure used in [44] for obtaining the terms of the [k] matrix follows.

Statically correct expressions of in-plane stresses and transverse-shear stresses were

derived in terms of the transverse-shear stress resultants and arbitrary constants that were

interpreted by Cohen as redundant "forces". The expressions for in-plane stresses were

obtained using the constitutive relations given in Eq. (2.22) and linear distribution of in-

plane strains through the wall thickness. The expressions of transverse-shear stresses

were obtained by integrating in the _3-direction the three-dimensional equilibrium

equations. The transverse-shear stress resultants were then used to derive an expression
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of the volumetric density of the transverse-shearstrain energy. A statically correct

expressionof theareadensityof the transverse-shearstrainenergywas thenobtainedby

integratingin the_3-directionthis volumetricdensity. The transverse-shearconstitutive

relationsgivenin Eq. (2.26)werethenderivedby applyingCastigliano'stheoremof least

work [46] by minimizing the areadensity of the transverse-shearstrain energy with

respectto theredundantforcesmentionedpreviously.
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CHAPTER lII

IMPLEMENTATION INTO VICONOPT

In this chapter, the implementation of the present theory into the VICONOPT code is

described. Additional simplifications made to the theory are described first. A

discussion of the use of the transverse-shear strain, )'z3, as a fundamental displacement

variable in the problem to maintain continuity of rotations at plate junctions is then

presented. The derivation of an expression for the curved-plate stiffness matrix is

described. The terms of matrices that are needed to calculate this stiffness matrix were

obtained using MATHEMATICA [40], and they are presented in Appendix A. The terms

for both CPT and SDPT are presented, and the terms that result from the inclusion of

direct in-plane transverse and in-plane shear loads in the in-plane stability equations are

specified. As stated previously, the implementation of the curved-plate theory into

VICONOPT follows very closely the method presented in Reference [2]. Therefore, the

following discussion is necessarily similar to that presented in that reference.

3.1 Simplifications to the Theory

Before proceeding with the derivation of the curved-plate stiffness matrix, a

discussion of several simplifications to be implemented is presented. First, the theory

implemented into the VICONOPT code considers structures that are prismatic in the

longitudinal direction. Therefore, for the curved plates being considered in the present

thesis, the radius of curvature in the longitudinal direction, R_, is infinite; and any terms

1
involving the quantity -- are zero. Although these terms are set equal to zero for the

RI

calculation of the terms of the stiffness matrix, they are retained for completeness in the



theory presented in this chapter. Another simplification to the theory involves limiting

the capability to locate the reference surface a distance zc from the centroidal surface.

This capability has only been implemented for the case where the effects of N22 and N_2

loads in the in-plane stability equations are neglected. The expressions for the stiffness

terms that result when Nz2 and N_2 are included in the in-plane stability equations and z_

is non-zero are prohibitively long. Therefore, in the derivation to follow, only the

following two cases are presented:

1) Nz2 and NI2 are included in the in-plane stability equations and zc is zero (i.e.,

reference surface is coincident with the centroidal surface); and,

2) N22 and NI2 are neglected in the in-plane stability equations and zc is non-zero

(i.e., reference surface may be translated from the centroidal surface).

3.2 Continuity of Rotations at a Plate Junction

One important issue to be addressed in the analysis of plate assemblies is the

continuity of rotations at a plate junction. The original VIPASA code is based upon CPT,

and the theory only treats four degrees of freedom (DOF) at a longitudinal plate edge.

These DOF are the three displacement quantities, ul, u2, and w, and a rotation about the

_-axis, _b2. Maintaining continuity of these DOF at a typical plate junction is very

straightforward. However, when SDPT is considered, there are five DOF at a

longitudinal plate edge. These DOF are the four from CPT as well as an additional

rotation, _, that results from the inclusion of transverse-shear deformation. Another

problem that must be addressed is that when two plates are joined together such that one

is rotated at an arbitrary angle, 0, to the other, rotations about the normals to the

centroidal surfaces of the two plates must be included to satisfy continuity of rotations.

This rotation, _n, is not accounted for in the present plate theory. The procedure used in
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VICONOPT to maintain continuity of rotations follows that used by Cohen in [47]. This

procedure introduces the shear strain, )'t3, as a fundamental displacement variable instead

of the rotation, ,t. The justification for using this approach is described subsequently.

The displacements and rotations at a typical plate junction are shown in Figure 3.1.

The two plates, numbered 1 and 2, are shown viewed along the 1-axis, and it is obvious

that the u_ displacements are easily matched regardless of the orientation of plate 2. The

displacements and rotations for which continuity must be maintained are u2, W, *l' and ,,.

Upon inspection of Figure 3.1(a), the following expressions for coplanar plates (0 - 0)

may be written as

u 1 =u_ (3.1a)

w 1 = w 2 (3.1b)

,I l =,2 (3. lc)

*ln =,2 n (3.1d)

where the superscripts 1 and 2 refer to the plate numbers. Similarly, upon inspection of

Figure 3. l(b), the following expressions for 0 = +90 ° may be written as
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u 1 = w 2 (3.2a)

W 1 = --U] (3.2b)

*I = -*2n (3.2c)

,1 ! (3.2d)
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Finally, upon inspectionof Figure3.1(c), the following expressionsfor arbitrary 0 may

bewritten as

uI = u2 cos0+ w2sin0

wI = w2cos0- u_sin0

¢}I1=_2 cos0_¢2 sin0

_In =q)2 cos0+¢2 sin0

(3.3a)

(3.3b)

(3.3c)

(3.3d)

The rotation aboutthe normal of a line elementoriginally directedalong the _,-axis is

shownin [48] to be

_u2
¢}n- (3.4)

Usingthis definition,Eqs.(3.3c)and(3.3d)arewrittenas

01 =*12c°s0-u2,1 sin0

! = u22,1cos 0 + _12 sin 0u2,1

(3.5a)

(3.5b)

Using Eqs. (3.3a) and (3.3b) and the definition for 713, Eq. (2.2d), the previous two

equations may be written as

713 = cos0 7123 (3.6a)

0 =-sin0 y23 (3.6b)
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The results shown in Eqs. (3.6a)and (3.6b) indicate that for plates that are not

coplanar(i.e., oneplateorientedat anarbitraryangle,0, to theother), theshearstrain,713,

mustbesetequalto zero for eachplateto maintaincontinuity of rotations. Therefore,if

713is madea fundamentaldisplacementquantity insteadof _, theshearstraincanbeset

equal to zeroby simply striking out the appropriaterows and columns in the overall

stiffnessmatrix. Performingthis operationreducesthe stiffnessmatrix to the samesize

as that for CPT. The VICONOPT code utilizes this procedurefor platesthat arenot

coplanar. For platesthat arecoplanar,i.e., 0 = 0, the shearstrain in plate 1 is equal to

that in plate 2. The VICONOPT codehandlesthis situationby creatinga substructure

usingthetwo plateswith all DOFpresentandeliminatingtheextraDOF beforeassembly

into thefinal stiffnessmatrix.

Theuseof theshearstrain,7_3,asa fundamentaldisplacementquantity requiresthat

the effective transverse-shearforce per unit length, q2, be modified. The modified

expression for q2 is obtained from the natural boundary conditions for an edge

_2=constant, that are derived from the virtual work expression, Eq. (2.8), when 713 is used

as a fundamental displacement variable. The modified expression is obtained by

replacing _ with the expression w, 1 -Ul - 713 in the boundary integral over _2 in Eq.
RI

(2.8). Performing this substitution, integrating by parts, and following the procedure

outlined in Section 2.6 yields the following modified definition for q2:

/ ,u,zc0,,1 ( ,u zc0 ,l_2=q2-N12 w, 1 -N22 w, 2 +[ml2-zcnl2], 1 (3.7)
R 1 R2



Thedefinition for q2 given in Eq. (3.7) replaces that given in Eq. (2.17c). Note that the

term ml2._ which appears in the Kirchhoff shear term of CPT is also present for the case

of SDPT when )'_3, is used as a fundamental displacement quantity.
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3.3 Derivation of the Curved-Plate Stiffness Matrix

Throughout this section, reference is made to force quantities. Although these

quantities are forces and moments per unit length, they are designated forces herein for

convenience. The first step in implementing the present theory into VICONOPT is to

derive a stiffness matrix that relates the force quantities along the two longitudinal edges,

+b to the displacements along those edges. The desired force and displacement
_2 = -2'

quantities are in the direction of the original (undeformed) coordinates. The

displacement variables are

iul]

(3.8)

where the shear strain, _q3, has been introduced as a fundamental displacement quantity

instead of the rotation, 01.

variables given in Eq. (3.8) are

The force variables that correspond to the displacement

"i ill2 ]1122

f=. t_2 , (3.9)

m22 l
i m12



Note that theeffectiveforcesat theboundaries,definedby Eqs.(2.17a)and (2.17b)and

Eq. (3.7),arebeingusedastheforcequantitiessince,asdiscussedin ChapterII, theyare

equalto theforcesin thedirectionof theoriginal (undeformed)coordinates.

The problemmaynow be reducedto ordinarydifferential equationsin y by assuming

that the responseof the plate in the longitudinal _t-direction varies sinusoidally.

Therefore,if thedisplacementsandforcesin theplatearenowconsideredto be functions

of _2,thevariablesof Eqs.(3.8)and(3.9)maybewrittenas

where

(in_lZ(_l'_2) =exp _, (3.10)

and _ is the half-wavelength of the response in the {_-direction. Since a sinusoidal

variation in the _-direction is assumed, the vector z will involve the amplitudes of the

displacement and force quantities. The imaginary number, i, has been used in Eqs. (3.8)

and (3.9) to account for the spatial phase shift that occurs between the perturbation forces

and displacements which occur at the edges of the plates during buckling for orthotropic

plates without shear loading and to result in real plate stiffnesses when using the

exponential expression of Eq. (3.10).

The next step in the derivation is to express all unknowns in terms of z. A partially

inverted form of the constitutive relations, Eq. (2.22), is used to express the required

quantities as functions of the fundamental variables in d and f or terms that may be

derived from the fundamental variables. The partially inverted constitutive relations are
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nil] [ hll h12 hi3 hi4 hi5 hi6 Ell

e22 [ [-h12 h22 h23 ] h24 h25 h26 n22

. 1312 _ = [-h13 h 2.____3 h 3_____3L h34 h 3.._5 h 3_____6nl.____2

mill / h14 -h24 -h34 / h44 h45 h46 !(11

_c221 [-h15 h25 h35 /-h45 h55 h56 m22
._Cl2J [.-hi6 h26 h36 |-h46 h56 h66 _m12

]t2 [.-h 78 h88 q2

(3.1 1)

where the linear portion of e_t from Eq. (2.2a) is used

w
Ell = Ul, 1 4---

Rl

The variables l(ll and (_1 were defined in Section 2.2 of Chapter II. The constants h_j in

the first portion of Eq. (3.11) are calculated from the A, B, and D matrices defined in Eq.

(2.25). The constants h77, h78, and h88 are shear stiffness terms and are calculated using

the theory presented in [44].

Another requirement of the present derivation is to express the relationship between

q2 and _ 2 without any _2-derivatives. This expression is

[U 1 - Zc(_l])t]2 + N12 w,, + N22('2 -h78_'1)+[ m'2 - Zcnl2 ],1
Rl

(3.12)
q2 = l- N22h88

As with the stability equations, only the linear portion of the strain-displacement

relations are considered in the present derivation



"J'12 = Ul,2 + u2,1 (3.13a)

w
e22 = u2, 2 +-- (3.13b)

R2

u2
Y23 = w,2 _2 (3.13c)

R2

K22 = -_2,2 (3.13d)

(3.13e)

The expression for K,2 can be re-written after substituting expressions obtained for _1 and

_2 from Eqs. (2.5a) and (2.5b) and using the linear portion of _12
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[ ]K:12 =- 72 + + u2 +2_2 + 1_1---_-2+71,2

R1 ,1 R1

(3.13f)

Using Eqs. (3.11) and (3.12), the strain displacement equations, Eqs. (3.13a) through

(3.13d) and (3.13f) and the equations, Eqs. (2.16a) through (2.16c) and (2.18a) and

(2.18b) are written in terms of the elements of z as

T z'=Pz or z' =T" Pz (3.14)

where a prime denotes differentiation with respect to _2. The square matrix T appears in

the present study as a result of the inclusion of the effects of N a and N,2 in the in-plane

equilibrium equations. This matrix was shown to be the identity matrix when these terms

were neglected in [2]. The presence of off-diagonal terms in this matrix is a fundamental

difference between the present theory and that presented in [2].



Theelementsof z arenow assumedto begivenby

i 13 _2)zj = cj exp b
(3.15)

where 13is a characteristic root of the differential equation. The number of values of 13is

equal to the order of the differential equation system. Substitution of Eq. (3.15) into Eq.

(3.14) results in the following equation
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where

(R- 131) c = 0 (3.16a)

R = bT-1p (3.16b)

and I is the identity matrix. The vector c consists of the cj of Eq. (3.15). The matrix R is

obtained by premultiplying P by T _. The eigenvalues of the matrix R are the

characteristic roots of the differential equation. This matrix is not symmetric; however, it

can be made real by multiplication or division of appropriate rows and columns by the

imaginary number, i. The elements of the matrices T and P are given in Appendix A for

both SDPT and CPT.

For each eigenvalue of R, there exists an eigenvector, c. A matrix C may be defined

with columns as the eigenvectors, c, the upper half of each column, denoted a, will be

associated with displacements, and the lower hall denoted b, will be associated with

forces. The form of C is therefore

[ala a,]C= bl b2 • • • bj (3. 17)

The next step in the derivation is to write the amplitudes of the displacements and forces

b
=-- are identified with a

at the two edges of the plate. Quantities evaluated at 42 2
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b
superscript1andquantitiesevaluatedat _2 = +- are identified with a superscript 2 as

2

follows:

,N /_idj = Y. ajkr k exp (3.18a)
k=l 2

d j = ]_ a jk rk exp (3.18b)
k=l

f] = _ bjkr k exp (3.18c)
k=l

f2 = ]_ bjkrkexp (3.18d)
k=l

where the r k are constants determined from the edge values and N is the order of the

differential equation. Equations (3.18a)-(3.18d) may be written in matrix form as

(dltd2 = Er (3.19)

f2 = F r (3.20)

Eliminating r from Eqs. (3.19) and (3.20) yields

(3.21)

where K is the stiffness matrix given by

K = F E "1 (3.22)

As for the case of CPT, K is real and symmetric for orthotropic plates without in-

plane shear loading, and it is Hermitian otherwise. Reference [2] presents a discussion of
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techniques used to ensure that accurate numerical results for K are obtained from Eq.

(3.22).

3.4 The Wittrick-Williams Eigenvalue Algorithm

A brief discussion of the analysis procedure used in VICONOPT is in order. As

previously mentioned, VICONOPT uses a specialized algorithm for determining any

natural frequency or buckling load for any given wavelength [29]. The development of

this algorithm was necessary because the complex stiffnesses defined in the previous

section are transcendental functions of the load factor and half wavelength of the

buckling modes of the structure. The eigenvalue problem for determining natural

frequencies and buckling load factors is therefore transcendental.

The iterative analysis procedure used in VICONOPT is described in [36]. For this

procedure, the plate stiffnesses for a given wavelength are evaluated at a series of trial

values of the eigenvalue being determined until convergence is attained. This eigenvalue

is either the load factor for buckling or the natural frequency for vibration, and it is

different than the eigenvalues of the R matrix of Eq. (3.16b). Unless otherwise specified

by the user, the default initial trial value used in the VICONOPT code is one. For each

trial value of the eigenvalue considered, the analysis requires the plate stiffnesses as well

as the number of eigenvalues that lie below the trial value for the entire plate assembly

assuming the longitudinal edges of each individual to be clamped. A complete

description of the eigenvalue algorithm is given in [28]. Determining the number of

eigenvalues exceeded by a plate with clamped edges is very difficult except for very

specialized cases. Therefore, the procedure developed in [28] is used. This procedure

subdivides each plate into sub-elements with a small enough width such that none of the

eigenvalues of the sub-elements with clamped edges lie below the trial value. A sub-

elements is then used as a substructure and is repeatedly doubled until the original plate

element is obtained. Using a simple procedure at each doubling step [29], the number of



eigenvaluesthat lie below the trial value for the complete plate is returned. This

procedureis repeatedfor eachplate in the assembly. Using this information and other

informationobtainedfrom thestiffnessmatrix of theentireassembly,thetotal numberof

eigenvaluesfor the entireplate assemblythat lie below the trial value is obtained. An

iterative procedureis thenusedto refine the trial valueuntil the desiredeigenvalueis

calculatedto within theaccuracyrequired.

One important pieceof information required for the analysisproceduredescribed

hereinis thenumberof subdivisionsrequiredfor eachplate. As seenin AppendixA, all

of thetermsof the R matrix areproportionalto theplatewidth, b. Therefore,all of the

eigenvaluesof R are proportional to b. Furthermore,it is important to note that an

eigenvalue equal to _ correspondsto buckling or vibration with simply supported

longitudinaledges. By successivelyhalvingthevaluefor b until all thereal eigenvalues

of R areless thanre,a valuefor the width of the sub-elementsfor which no eigenvalues

lie below the eigenvaluefor simply supportededgesis determined. This width also

guaranteesthat noeigenvaluesfor the sub-elementslie below theeigenvaluefor clamped

edges.This width is thatusedin the iterativeanalysisproceduredescribedpreviously.
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CHAPTER IV

NUMERICAL RESULTS

In this chapter, numerical results are presented using the newly implemented curved-

plate analysis capability in VICONOPT. Results from several example problems are

presented to verify the results obtained with this new capability. A convergence study

using the segmented-plate approach in VICONOPT is performed for an isotropic

cylindrical shell subjected to uniaxial compression to identify a suitable number of

segments to be used when comparing results. Results comparing the computational effort

required by the new analysis to that of the analysis currently in the VICONOPT program

are also presented for this example. Comparisons of results for several curved plates

analyzed in Ref. [32] are then made. The effects of including terms related to in-plane

transverse loads in the in-plane stability equations are examined using a long cylindrical

tube subjected to in-plane transverse loading. Finally, the curved-plate analysis is used to

conduct a design-optimization study of a honeycomb-sandwich cylindrical shell

subjected to uniaxial compression. Comparisons of analyses using both physical and

tensorial strain measures are made for selected examples, and, where appropriate, results

using CPT and SDPT are compared.

4.1 Convergence of the Segmented-Plate Approach

The convergence of results using the segmented-plate approach in VICONOPT is

examined for the case of an aluminum cylindrical shell subjected to uniaxial

compression, see Figure 4.1. The values of the material properties used for this example

are E = 10.0 x 10 6 psi and v_2 = 0.33. The wall thickness, t, is 0.1 in., and the radius, 1_ is

60 in. As shown in Reference [49], the critical value for the stress resultant, N 1 lcr' for

the axisymmetric buckling of a long isotropic cylindrical shell is



Et2
Nllcr = - 1019.354lb/in. (4.1)

For v_2= 0.33, the critical half wavelength,_,cf,for axisymmetricbuckling is shownin

[49] to be
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R2t2 .74,,/-R-2t4.255 in. (4.2)_'cr=_ '12_v_2)-1 =

Resultsillustrating theconvergenceof the VICONOPT segmented-plateresultsfor

N11cras a function of the numberof segmentsusedto approximatethe cylinder are

shownin Figure4.2. In this figure, theresultsof thesegmented-plateanalysisareshown

asthe solid curve. The theoreticalvalueobtainedfrom Reference[49] is shownasthe

dashedhorizontalline. The valueobtainedusingthepresentcurved-plateanalysiswith

two curved-plateelementsis shownasthe opensymbol. All results in this figure are

calculatedfor the valueof _., given in Eq. (4.2). The VICONOPT resultspresentedin

this figure areobtainedusingCPT with tensorialstrainmeasures.As shownin Figure

4.2, thesegmented-plateresultsconvergeto thetheoreticalvaluewhen 120segmentsare

used. Therefore,to ensurethatconvergedresultsareobtainedwhenthe segmented-plate

approachis usedto analyzetheremainingexampleproblems,sixty segmentswill beused

when analyzingcurved plateswith an included angleof 180degreesor less,and 120

segmentswill beusedwhenanalyzingfull cylinders.

This exampleproblem is alsousedto studythe computationalrequirementsof the

new curved-plate analysis in relation to the segmented-plateapproach. A plot of

normalized CPU time as a function of the number of plate segmentsused in the

approximationis shownin Figure4.3 for the segmented-plateanalysisusing eitherCPT

or SDPT. The normalizedCPUtime shownin this figure is theCPUtime requiredfor
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the segmented-plateanalysesnormalizedwith respectto the CPU time requiredfor the

curved-plateanalysisusingtwo curved-plateelements.Thehorizontaldashedline is at a

normalized CPU time of 1.0, and it representsthe curved-plateanalysis results. As

shown in the figure, to achieveconvergencewith 120 flat-plate segmentsrequires

approximately3.5 timesand 16.7times asmuchCPUtime asthe curved-plateanalysis

for CPT andSDPT,respectively. (For theanalysisusingSDPT,G_2= G_3= G23 ). One

consideration to note at this time is that the segmented-plate analysis in VICONOPT is

implemented to handle the general case of variable geometry, stiffness and loading in the

_2-direction. This approach is therefore not as computationally efficient as it could be for

the case of constant curvature, stiffness, and loading in that direction (as is the case for

the curved-plate analysis). One approach to determining the additional computational

efficiency that may be obtained with the segmented-plate analysis involves defining a

single, small flat plate that is repeatedly doubled using the substructuring capability in

VICONOPT until the curved-plate segment is obtained. This technique is referred to

herein as 'doubling'. Results relating the computational effort of this approach to the

curved-plate analysis indicate that further reduction in the computational effort required

for the segmented-plate analysis can be obtained using this technique. This result occurs

because the in-plane and out-plane equations are uncoupled in the segmented-plate

analysis, and analytical expressions for the plate stiffnesses can be used. However, this

approach is currently not automated in the VICONOPT code, and a separate 'doubling'

effort would have to be made for every curved-plate segment in any given analytical

model.

4.2 Buckling of Curved Plates With Widely Varying Curvatures

The example problems presented in the next two sections are taken from Ref. [32],

and they are used to verify the results obtained using the new curved-plate analysis in

VICONOPT. The positive sense of the applied in-plane loadings to be considered in all



of the following examples is given in Figure 4.4. The first example problem considered

studies the buckling of a symmetrically laminated curved plate with clamped longitudinal

edges as a function of the curvature of the plate. The geometry of the plate is shown in

Figure 4.5. As shown in the figure, the plate is constructed from symmetrically

laminated boron/epoxy plies with a [0/90/+45] s layup. To allow for direct comparison of

results with those presented in [32], the SI units are used for this example and the

example in the following section. The material properties for a boron/epoxy ply are

given in Table 1.

The following loadings are considered for this example problem: Nt_ only, N22 only,

N_2 only, and combined N_ = N22 = N_2. The buckling of this plate subject to these four

different loadings was investigated while varying the value of the curvature parameter,

b 2
_, from 1 to 1000. The values of b, R 2, and 13used for these analyses are summarized
R2t

in Table 2. Both physical and tensorial strains are used with the new curved-plate

analysis, while physical strains only are used for the segmented-plate analysis. The

analysis of [32] uses physical strains. All analysis results presented in this section are for

CPT. The terms involving N22 and N_2 are included in the in-plane stability equations for

all analyses. The results of this study are presented in Table 3 for N_ loading, in Table 4

for N22 loading, in Table 5 for Nt2 loading, and in Table 6 for combined N_, = N22 = Ni2

loading. The critical values of the stress resultants presented in these tables were

calculated using for the values of -- given in the tables. These values of -- were
b b

presented in Reference [32]. The critical values of these stress resultants are also plotted

as a function of the curvature parameter in Figure 4.6 through Figure 4.9, respectively.

As shown in these tables, the present analysis compares very well with that presented in

{32] and with the segmented-plate analysis for widely varying values of the curvature
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parameter. As shown in Tables 3-6, there is no appreciabledifference in the results

obtainedusingphysicalandtensorialstrains.

4.3 Buckling of an Unsymmetrically Laminated Curved Plate

This example problem includes the effect of bending-stretching coupling and shear-

extension coupling on the buckling of an unsymmetrically laminated curved plate with

simply supported longitudinal edges. The geometry of the curved plate is shown in

Figure 4.10. As shown in the figure, the laminate being studied consists of a 0.0508-cm.-

thick layer of 2024 aluminum that is reinforced on the inner surface with pairs of +45 °

boron/epoxy plies. The material properties for 2024 aluminum are given in Table 1. For

this example, the number of pairs of +45 ° boron/epoxy plies is increased from one to

seven. The analyses used for this example are identical to those used for the previous

example. The critical values for buckling of the stress resultants N_ and N_2 are

presented in Tables 7 and 8, respectively. These values are also plotted as a function of

the number of boron/epoxy plies used in the laminate in Figure 4.11 and Figure 4.12,

respectively. The agreement between all the analyses is very good. As with the previous

example, there is no appreciable difference in the results obtained using physical and

tensorial strains. Results were also computed using SDPT. However, for the case of

seven pairs of pairs of +45 ° boron/epoxy plies, the R/t ratio is still approximately 300,

and the effects of transverse-shear deformation are minimal. Therefore, as expected, the

critical values for buckling of the stress resultants N11 and NI2 were slightly less than

those for CPT, but the differences were less than 0.2 percent. With regards to the CPU

time requirements for this example, the segmented-plate analysis using SDPT required

approximately 35 times as much CPU time as the curved-plate analysis for the case of 14

boron/epoxy plies. Furthermore, the results obtained using the 'doubling' approach

described in Section 4.1 indicate that the computational efficiencies offered by that

approach were not realized for this example problem. This result occurs because the
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coupling that occurs due to the unsymmetric laminate prevents the in-plane and out-of-

plane equations from being uncoupled, and the same numerical approach for calculating

the plate stiffnesses as that used for the curved-plate analysis must be used.

4.4 Effect of N22 Terms in the In-Plane Stability Equations

As stated previously, the original segmented-plate analysis in the VICONOPT code

neglects the effects of the terms involving N22 and N12 in the in-plane stability equations.

This example problem illustrates the effect these terms may have on the buckling of an

isotropic (aluminum) long cylindrical tube subjected to uniform external pressure. The

material properties in English units for aluminum are given in Table 9. The geometry of

this example problem is shown in Figure 4.13. As shown in the figure, only half of the

tube is modeled since the buckling mode being studied is symmetric (i.e., two full waves

in the circumferential direction). The pressure load is modeled as an applied N22 hoop

loading. The value of the external pressure that would generate this hoop load is obtained

from the following expression [49]

p = N2-----L2 (4.3)
R2

Simitses [50] presents a detailed discussion of the buckling of a thin circular ring

uniformly compressed by external pressure. When considering the behavior of the

pressure load as the ring buckles, Simitses describes three possible cases. In Case 1, the

pressure load is assumed to remain normal to the deflected surface. This loading is

referred to as a live pressure load. In Case 2, the pressure load is assumed to remain

parallel to its original direction. This loading is referred to as a dead pressure load. In

Case 3, the pressure load is assumed to always be directed toward the center of curvature

of the ring. This loading is referred to as a centrally directed pressure load. Only Cases 1

and 2 will be discussed in the present thesis.
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In Reference [50], Simitses presents in-plane and out-of-plane stability equations for

the thin circular ring which may be rewritten in the notation used in the present thesis as

/R2-Pcr w,2- -P2 =0
(4.4)

n22 Pcr (R2w,22 -u2,2)- p3 = 0 (4.5)
q2,2 R2

where P2 and P3 are the perturbation values of the applied pressure load in the buckled

state in the _z- and _3-directions, respectively. For the case of a live pressure load in

which the applied pressure is assumed to remain normal to the deflected surface, P2 and

P3 are (for small deformations)

P2 =-Pcr w,2- and P3 = 0 (4.6)

For the case of a dead pressure load in which the applied pressure is assumed to remain

parallel to its original direction, P2 and P3 are

P2 = 0 and P3 = 0 (4.7)

Substituting Eqs. (4.3) and (4.6) into Eqs. (4.4) and (4.5), yields the following stability

equations for the case of live pressure loading:

n22, 2 + q__2.2= 0 (4.8)
R2

n22 ( u2,2)= 0q2,2 R2 N22cr w,22 R2
(4.9)
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SubstitutingEqs. (4.3) and(4.7) into Eqs. (4.4)and (4.5),yields the following stability

equationsfor thecaseof deadpressureloading:

(n22, 2 + q2 N22cr w, 2- = 0 (4.10)
R2 R2

u2,2 )n22 N22cr w,22 =0 (4.11)
q2,2 R2 R2

For live pressure, the critical value of pressure is shown in [50] to be

Therefore,

3EI

Pcr R3
(4.12)

3EI

N22cr = R7 (4.13)

For dead pressure, the critical value of pressure is shown in [50] to be

4EI

Pcr R3 (4.14)

Therefore,

4EI

N22cr = R--_ (4.15)
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As discussed in Reference [49], results for the case of a long cylindrical tube uniformly

compressed by external pressure, may be obtained by considering an elemental ring of

unit width and using Eqs. (4.12) through (4.15) with E replaced by E/(1-v 2) and I

replaced by t3/12.

External pressure loads are not included in the present analysis. However, an

equivalent N22 loading may be calculated using Eq. (4.3). The present analysis treats the

applied loads as dead loads since no effort is made to modify the applied loads as the

plate deforms. The stability equations in the _2 and _3 directions, Eqs. (2.11b) and

(2.1 lc) for the present analysis are written for a thin circular ring subjected to N22 loading

by ignoring any terms that involve N_2, _, or derivatives with respect to _. These

equations are

q2 N22
n22,24 w, 2- -FN22 +u2,22 =0 (4.16)

R2 R2 - K2

( u2'2 / -FN22 (_w + / 0 (4.17)n22 N22 w,22 + u2,2 =
q2.2 R2 R2 R2 _,R2

Comparing Eqs. (4.9), (4.11), and (4.17), reveals that if physical strains are used in the

present analysis (i.e., F = 0), the out-of-plane stability equation is identical to that given

by Simitses for both live and dead pressure loads. Furthermore, the in-plane stability

equation for the live pressure load case is recovered by the present analysis if the N22

term is neglected in Eq. (4.16). The dead pressure load case is seen to be recovered when

the N22 term is included in Eq. (4.16). Comparing Eqs. (4.6), (4.7), and (4.16), shows that



for thecaseof physicalstrains,theremainingterminvolving N22is actuallyequivalentto

thecomponentof a live pressureloadin the_2direction(seeEq. (4.6)).

Buckling resultsfor this examplearepresentedin Table 10. TheVICONOPT results

presentedin this tablearefor physicalstrains. As previouslydiscussed,the VICONOPT

resultwhenthe N22 term is neglected in the in-plane stability equation corresponds to the

case of live pressure load, and the VICONOPT result when the N22 term is included in the

in-plane stability equation corresponds to the case of dead pressure load. The results for

physical strains for the segmented-plate analysis always equal those for the case of dead

pressure load since the N22 term in the in-plane stability equation also involves 1/R 2 and it

therefore drops out of that equation altogether. These results illustrate the dramatic effect

that the N22 and N_2 terms in the in-plane stability equations can have on the buckling

results for curved plates.

4.5 Design Optimization of a Cylindrical Shell Subject to Uniaxial

Compression

The final example utilizes the new curved-plate analysis with the design optimization

capability of VICONOPT to perform a structural optimization of two different cylindrical

shell concepts subject to uniform axial compression (N_ loading). The two concepts are

solid-wall construction and honeycomb-sandwich construction. The geometry of this

example problem is shown in Figure 4.14. As shown in the figure, the facesheets of the

honeycomb-sandwich concept are aluminum, and the core is Korex TM aramid paper

honeycomb core [ 51 ]. The solid-wall concept is aluminum. The material properties used

for the facesheets and core are presented in Table 9.

Before results for this example are presented, a discussion of the modeling technique

used to model this cylinder is presented. An analysis of a complete cylinder was

performed using only one plate element with the new curved-plate analysis capability in
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VICONOPT. The cylinder is modeledby defining a repetitivecross-sectionin which

there is only one nodethat is connectedto itself. However,numericalproblemswere

encounteredwhen analyzing closed cylinders with very small wavelengths. The

following procedurewasusedto avoidthisproblem. First, a45° arcsegmentis defined.

Second,a 90° arcsegmentis definedasasubstructureby connectingtheoriginal 45° arc

segmentto itself. Similarly, a 180° arc segmentis constructedfrom two 90° arcs.

Finally, a 360° arc is constructedfrom two 180° arcs. This substructureis thenusedto

definetherepetitivecross-sectionof thecylinderaspreviouslydiscussed.This modeling

techniqueis usedfor all closedcylindersanalyzedin thepresentthesis,andno numerical

problemswereencounteredwhenusingthis technique.

The design variables for the structural optimization are the thicknessesof the

facesheetsandthecorefor thesandwichconceptandthewall thicknessfor thesolid-wall

construction. There is no minimum-gagerestriction for any design variables. The

nominal valuesfor thesevariablesare 0.1 in., 0.5 in., and 0.1 in., respectively. The

designconstraintsare that the strain in the facesheetsor the solid wall cannot exceed

0.005in/in andthatthestressin thecorecannotexceed115psi in the _-direction and55

psi in the _2-direction. The resultsof this study, including the massof the optimized

cylinder and the final values of the designvariables are given in Table 11 for the

honeycomb-sandwichconceptandin Table 12for the solid-wall concept. Resultsfrom

both CPT and SDPT are given in thesetables. The optimized massvalues are also

plotted asa functionof theappliedloadingin Figure4.15. As seenin the tablesandthe

figure, thevaluesfor optimizedmassobtainedusingCPT areslightly lessthanthosefor

SDPT for the honeycomb-sandwichcylinder as the applied loading is increased.

However, the valuesfor core thicknessobtainedusing CPT aresignificantly less than

thosefor SDPT for the honeycomb-sandwich cylinder as the applied loading is increased.

These results are expected because CPT results in an overly stiff approximation since the
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effects of transverse-sheardeformationareneglected. This overly stiff approximation

resultsin higherbuckling loadsfor a givencorethickness.Therefore,thecore thickness

and theoptimum massobtainedis lessthan that obtainedusingSDPT. The optimized

mass values for the solid-wall construction are much greater than those for the

honeycomb-sandwichconstruction. Theresultsfor CPT andSDPT arenearly identical

for thesolid-wall construction,asexpected.
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CHAPTER V

CONCLUDING REMARKS

The VICONOPT computer code is an exact analysis and optimum design program

that includes the buckling and vibration analyses of prismatic assemblies of fiat, in-plane-

loaded anisotropic plates. In the present thesis, the capability to analyze curved-plate

segments exactly has been added to the VICONOPT code. Non-linear curved-plate

equilibrium equations have been formulated using the principle of virtual work, and

linearized stability equations that describe the response of the plate just after buckling

occurs were derived following the application of several simplifying assumptions.

Finally, modifications to these equations were made to allow the reference surface of the

plate to be located at a distance zc from the centroidal surface.

The analysis methodology described in the present thesis improves upon the existing

methodology in the VICONOPT code (referred to herein as the segmented-plate analysis)

which requires that curved-plate segments be subdivided into several fiat-plate elements

that must be subsequently joined at their longitudinal edges to approximate the curved-

plate geometry. The new analysis formulation allows either classical plate theory (CPT)

or first-order shear deformation plate theory (SDPT) to be used. Furthermore, anisotropic

laminates having fully populated A, B, and D stiffness matrices may be analyzed. The

analysis described in the present thesis is an example of an exact finite-strip method

(FSM) since it uses a stiffness matrix that is derived by direct solution to the stability

equations.

One additional capability that has been incorporated into the VICONOPT code as part

of the present thesis is the option to use plate elements (fiat or curved) that are based

upon nonlinear strain-displacement relations that contain terms from either physical or

tensorial strain measures. A second capability that has been added is the ability to
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includetheeffectof termsassociatedwith in-planetransverseandin-planeshearloading

in the in-planestability equations.Theoriginal VICONOPTcodeneglectstheseterms.

Resultsfrom the presentcurved-plateanalysiscapability comparevery well with a

closed-formsolutionandtheexistingsegmented-plateanalysisfor thebuckling of a long

isotropic cylinder. The presentanalysis also compareswell with results from the

literaturefor symmetricallylaminatedcurvedplateswith widely varying curvaturesand

with unsymmetricallylaminatedplatesthat includetheeffectof extensional-bendingand

shear-extensioncoupling. No appreciableeffects of using tensorial versusphysical

strainsarenotedin theseexamples.Thepresentcurved-plateanalysiswasalsoshownto

require significantly lesscomputationaleffort than the segmented-plateanalysis. An

alternateapproachfor thesegmented-plateanalysisthat offers additionalcomputational

savingsfor certainclassesof problemshasbeeninvestigated. However,this approach

requiresgreaterusereffort, andit iscurrentlynot implementedin theVICONOPTcode.

A significant effect of either including or neglectingthe terms associatedwith an

applied in-planetransverseloading(i.e.,N22loading) in the in-planestability equations

wasnotedwhenanalyzingalong cylindrical tubesubjectedto uniform externalpressure.

The symmetryof thebuckling modefor this problemallowedit to bemodeledasahalf

cylinder,andthepressureloadwassimulatedwith anequivalenthoop(N22)loading. The

buckling resultsfor thisproblemwereshownto changeby afactorof 3/4whentheterms

associatedwith theN22loadingwereneglectedin the in-planestability equations. This

result illustratesthe effect that thetreatmentof the in-planestability equationscanhave

on thebuckling resultsfor curvedplates.

Finally, thepresentcurved-plateanalysiswasusedto conductadesign-optimization

study of two different cylindrical shells subject to uniform axial compression (N_

loading). Oneshellwasconstructedfrom ahoneycomb-sandwichwall construction,and

the otherwasasolid-wall construction.Thevaluesof massfor theoptimizedsolid-wall

designwere consistentlyhigher than those for the honeycomb-sandwichconstruction.
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However,therewasnodifferencebetweenresultsusingCPTandSDPTfor thesolid-wall

cylinder. Thevaluesof massfor theoptimizedhoneycomb-sandwichcylinderusingCPT

wereslightly lessthanthosefor SDPTasthe appliedloadingwasincreased.However,

the valuesof core thicknessfor theoptimizedhoneycomb-sandwichcylinder usingCPT

were significantly lessthanthosefor SDPTastheapplied loadingwas increased.This

trendoccurredbecauseCPT resultsin anoverly stiff approximationsincethe effectsof

transverse-shearflexibility are neglected. This overly stiff approximation results in

higherbuckling loadsand,thus,a loweroptimummass.

Oneareafor future work includesretainingthe curvaturetermsin the longitudinal

direction andimplementingthe capabilityto analyzeshellsof revolution. The analysis

canalsobemodified to allow vibrationanalysesto beperformed. Another enhancement

that can be made to the present analysis is to remove the restriction that when the terms

associated with in-plane transverse and in-plane shear loading are retained in the in-plane

stability equations, the centroidal surface and reference surface must coincide.
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APPENDIX A

MATRICES FOR DETERMINING CHARACTERISTIC ROOTS

The eigenvalues of matrix R in Eq. (3.16a) are the characteristic roots of the

differential equations describing the behavior of the plate. The 10-by-10 matrix R is

calculated from the matrices T and P as shown in Eq. (3.16b). The non-zero elements of

the T matrix are

* * * * *

t3, 3 = t4, 4 = t5, 5 = t6, 6 = t7, 7 = t8, 8 = t9, 9 = tl0,10 = 1

tl, 1 =I-(_E_ E h33N22- _G h23N12) tl, 2

t2, l =-(_.E h23N22-G__ h22N12 )

=-_F_ h23N22+(3 h33N12

t2, 2 =I-(_F h22N22-G h23Nl2 )

t4,1 =E h35N22-GG_ h25Nl2 t4, 2

t5, l =-(E h36N22-G h26N12 )

=F h25N22-G h35N12

t5, 2 =-F h26N22+G h36N12

t6,1 = E H h33N22N12-G H h23N12-_E hl3N22 +(3 hl2N12

t6, 2 =-_ F H h23N22N12-G H h33N22 -_ h12N22+G h13N12

t7,2 =b(F H h22N22NI2-G H h23N22+G N12 )

* t_ t_ 2

t8,1 = _tl0,1 =-_-_-(E h34N22 -__G h24N12 )

• _ _2

t8, 2 =--_t10,2 ----_(F h24N22-G h34N12 )
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The underlined terms given above and subsequently are those terms that drop out of the

equation when the effects of N22 and N_2 in the in-plane stability equations are neglected.

The non-zero elements of the P matrix are

• ( )PI,1 =-°t hl3-H h33N12 Pl,2 = -Ct(1- H h23N12)

Pl,3 =---g-h34- (_F h23N22-_G_ h33Nl2 )

Pl,5 = PlO,6 = °_h34 Pl,6 = -bh33

Pl,7 = P2,6 = -bh23 Pl,9 = -P4,6 = -bh35

PlJ0 = P5,6 =-bh36 P2,1 = -ct(hl2 -H h23N12)

P2,2 = otH h22Nl2

P2,3 =
b _2h24 b

R 2 b R 2

P2,5 = P10,7 = °th24

(F h22N22-G h23N12 )

P2,7 =-bh22 P2,9 =-P4,7 = -bh25

P2,10 = P5,7 = -bh26

otN12h88

P3,3 = P8,8 - S

b

P3,4 =_

bh 78

P3,5 = PI0,8 = S

t_ oth88

P3,10 = -P5,8 = -_P3,8 = S

• ( )P4,1 = _ h15 - H h35N12 P2,2 =-o_H h25N12
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• 0_2h45 b (F h25N22-G h35N12 )
P4,3 = b R 2

P4,5 =-_P10,9 = cxh45 P 4,9 = bh 55

P4,10 = -P5,9 = bh56 P5,1 =-0_(h16 - H h36N12)

P5,2 = ot +H c£h26N12
R2 --

o_2

P5,3 =y(h46q N12588)-_2 (F h26N22-G h36N12)

P5,4 =ot+--
S P5,5 = Pl0,10 =-_(h46 +-_-)

cz2h88
P5,10 = -bh66----

bS

(g2

, -C/t2bNll __b__(h i 1P6,1 - _L2 +
+ 2__Hhl3N12 - H2h33N22)

°_2N12 (G+H[I+hl2-H h23N12])
P6,2 - _ -- --

• °:/ )P6,3 = -h14+--Hh34N12. + (Nl2[_G_hl3-G Hh33N12+F H

-F hl2N22)4 -C£t/_2NllZc
- _2

h23N22 ]

ct 2 C_.x2bNI iZc

P6,5 = ---_- (h 14 - _Hh34N'2 )- _2
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• ( )P6,6 = _ -h13 +--Hh33N12 * (_hl 2 _Hh23N12)P6,7 =or. +

P6,9 = °t(-hl5 +--Hh35N12) P6,10 = _(-h16 +-Hh36N12)
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R2S
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b (1-cth88N22)
P7,8 = SR 2
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P8,4 t_Nl2 1+ _z--_-c1
= (_ K2)

(LN12h78 o_3h44 Cot_2NI 1Z2
- +

P8,5 S b 2 k2

ot2h34
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bh78N22
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The expressions for the elements of the T and P matrices for the case of classical

plate theory are obtained by setting the transverse-shear strains, _'_3and _'23, equal to zero

1
and using the resulting expression 01 = w,1 (recall that equals to zero). The

Rl

partially inverted stress-strain relations given in Eq. (3.11), are modified such that m_2

and _:12 are interchanged. For the classical case, only four stability equations, Eqs.

(2.16a), (2.16b), (2.16c), and (2.18a) are used since Eq. (2.18b) is satisfied by

incorporation into the final form of Eq. (2.16c). The same steps used for the transverse-

shear case are followed to generate T and P matrices of order eight. The elements of the

T and P matrices with a superscript * given previously for the transverse-shear case also

apply for the classical case if 1 is subtracted from any index greater than 4. The non-zero

elements of the T matrix that are not given in the results for transverse shear are

t6,1 =-_ E H h23N22N12-G H h22N122-E__ N22- Eh36N22-G_h26N12

t6,2 =_ - F H h22N22NI2-G H h23N22+G NI2- _Fh26N22-Gh36N12

t8,1 = -_(Eh36N22 -Gh26N12) t8, 2 = -_(__Eh26N22 - Gh36N12)

The non-zero elements of the P matrix that are not given in the results for transverse

shear are
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Pl,2 =-0_ 1+ h--_36-I-Ih23N12]K2 - /

-(_I h26 - LIh22N12 /P2,2 = _ R2
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P4,4 = 2°_h56

Pl,4 =-2°th36

P2,4 = -2°_h 26

_( h56- Hh 25N 12 )P4,2 = _ R2

P5,2 - / E o2h16°_2N12 + h36 - H h23N12
b G + H 1 + hi2 R2 _ bR2

-2°_2 (h16 - Hh36NI2 )
P5,4 - b

P6,1 - E l) 2h6ot2N12 +h36 _H h23N12
b G+H l+h12 R2 _ bR2

__ _ ) Bn2bNll°_2 (h66 - _Hh22NI2 ] _,2
P6,2 = b _R 2 +LINI212h26

= 0_3 (h46 +LIh24N12)P6,3 b-2" _-_2

o_Fh26N22 o_N12

R 2 R 2

Gh36 /
+ °tNl2 (I+G-G Hh23N12 +F Hh22N22 +_

R 2 t,. R 2

20_2 ( h66 + ] bN22 (1-1)4 -BT_2bNllZcP6,4 = ---g-- _,--_-2 LIh26NI2' R2 _2

P6,5 =-0_(1-t-h3-----_6 - L-Ih23NI2 )R2
P6,6 -0_ h-_26 - Hh22NI2 /
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b
P6,7 =---
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Table 1. Material properties for boron/epoxy plies and 2024 aluminum (SI units).

Material Ellxl0 -10, E22x10 "!0, Gl2xl0 -10, v12 p, kg/m 3
N/m 2 N/m 2 N/m 2

Boron/epoxy 20.69 1.86 0.48 0.21 2006.8
Aluminum 2024 7.38 7.38 2.76 0.33 2768.0

Table 2. Geometric parameters used to vary the curvature parameter,
b 2

R2t

b 2

R2t
b, cm. R 2, cm.

1 24.4002 5760.3570

5 24.4005 1152.1180

10 25.4020 576.12905

_, degrees

0.25264

1.2632

2.5262

30 25.4185 192.2917 7.5738

50 25.4513 115.67310 12.6067

100 25.6036 58.53098 25.0633

300 27.1026 21.86161 71.0315

500 29.6186 15.66554 108.3281

700 32.6900 13.63059 137.4115

1000 37.7873 12.75046 169.8018
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/

Figure 1.1 Typical longitudinally stiffened plate structures.

Figure 1.2 Segmented representation of curved plate geometry currently used by
VICONOPT.
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ql q2

nll n12 n21 n22
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Figure 2.1. Curved-plate geometry and sign convention for buckling displacements,
rotations, moments, and forces.
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Centroidal surface

Reference surface

ZC
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Figure 2.2 Sign convention for applied in-plane loads and relation of reference
surface to centroidal surface.



83

Reference
surface

Figure 2.3 Curved-laminate geometry.
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(a) plates 1 and 2 coplanar
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(b) plate 2 rotated to 0=+90 °

_2
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(c) plate 2 rotated to arbitray angle, 0

Figure 3.1 Displacements and rotations at a typical plate junction.



85

NIl

==

I-

I-

I-

E = 10.0x 106 psi

vl2 = 0.33

P = 0.1 lb/in.3

Figure 4.1 Long isotropic (aluminum) cylinder subjected to uniaxial
compression.
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Figure 4.2 Convergence of VICONOPT segmented-plate results as a function of the
number of segments used in the approximation.
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Figure 4.3 Normalized CPU time requirements for the segmented-plate approach
as a function of the number of segments used in the approximation.
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Figure 4.4 Positive applied in-plane loads on a long curved plate.

nominal ply

_R( P _kness = 0.014 cm.

[0/90/+451s

25.4 cm

Figure 4.5 Symmetrically laminated long curved plate with clamped longitudinal
edges subjected to applied in-plane loads.
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Figure 4.6 Critical value of stress resultant Nj 1 for buckling of a symmetrically

laminated curved plate with clamped longitudinal edges.
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Figure 4.7 Critical value of stress resultant N22 for buckling of a symmetrically

laminated curved plate with clamped longitudinal edges.
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Critical value of stress resultant N12 for buckling of a symmetrically

laminated curved plate with clamped longitudinal edges.
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Figure 4.9 Critical value of stress resultants Nil = N22 = N12 for buckling of a

symmetrically laminated curved plate with clamped longitudinal edges.
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Figure 4.10 Unsymmetrically laminated aluminum and boron/epoxy (B/E)

curved plate with simply supported edges subjected to applied in-
plane loads.
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Figure 4.11 Critical value of stress resultant Nil for buckling of an

unsymmetrically laminated aluminum and boron/epoxy (B/E)
curved plate with simply supported longitudinal edges.
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Figure 4.12 Critical value of stress resultant Nl2 for buckling of an

unsymmetrically laminated aluminum and boron/epoxy (B/E)
curved plate with simply supported longitudinal edges.
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Figure 4.13 Isotropic (aluminum) long cylindrical tube subjected to uniform
external pressure loading.
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Figure 4.14 Cylindrical shell subjected to uniform axial compression (Nll loading).
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Figure 4.15 Optimized cylinder mass as a function of the applied loading

for a cylindrical shell.


